Geomagnetic Storm

 

A geomagnetic storm is a temporary disturbance of the Earth's magnetosphere caused by a disturbance in space weather. Associated with solar flares and resultant solar coronal mass ejections (CME), a geomagnetic storm is caused by a solar wind shock wave and/or cloud of magnetic field which typically strikes the Earth's magnetic field 3 days after the event. The solar wind pressure on the magnetosphere and the solar wind magnetic field will increase or decrease depending on the Sun's activity. The solar wind pressure changes modify the electric currents in the ionosphere, and the solar wind's magnetic field interacts with the Earth's magnetic field causing the entire structure to evolve. Magnetic storms usually last 24 to 48 hours, but some may last for many days. In 1989, an electromagnetic storm disrupted power throughout most of Quebec and caused aurorae as far south as Texas.

Historical occurrences

From August 28 until September 2, 1859, numerous sunspots and solar flares were observed on the sun, the largest flare occurring on September 1. A massive CME headed directly at Earth due to the solar flare and made it within eighteen hours — a trip that normally takes three to four days. On September 1 – 2, the largest recorded geomagnetic storm occurred. The horizontal intensity of geomagnetic field was reduced by 1600 nT as recorded by the Colaba observatory near Bombay, India. Telegraph wires in both the United States and Europe experienced induced emf, in some cases even shocking telegraph operators and causing fires. Auroras were seen as far south as Hawaii, Mexico, Cuba, and Italy — phenomena that are usually only seen near the poles. This was the 1859 solar superstorm.

On March 13, 1989 a severe geomagnetic storm caused the collapse of the Hydro-Québec power grid in a matter of seconds as equipment protection relays tripped in a cascading sequence of events.Six million people were left without power for nine hours, with significant economic loss. The storm even caused auroras as far south as Texas. The geomagnetic storm causing this event was itself the result of a coronal mass ejection, ejected from the Sun on March 9, 1989.

Ice cores show evidence that events of similar intensity recur at an average rate of approximately once per 500 years. Since 1859, less severe storms have occurred in 1921 and 1960, when widespread radio disruption was reported.

In August 1989, another storm affected microchips, leading to a halt of all trading on Toronto's stock market.

Since 1989, power companies in North America, the UK, Northern Europe and elsewhere evaluated the risks of geomagnetically induced currents (GIC) and developed mitigation strategies.

Since 1995, geomagnetic storms and solar flares have been monitored from the Solar and Heliospheric Observatory (SOHO) joint-NASA-European Space Agency satellite.

On February 26, 2008 the magnetic fields erupted inside the magnetotail, releasing about 1015 Joules of energy. The blast launched two gigantic clouds of protons and electrons, one toward Earth and one away from Earth. The Earth-directed cloud crashed into the planet below, sparking vivid auroras in Canada and Alaska.

Interactions with planetary processes

The solar wind also carries with it the magnetic field of the Sun. This field will have either a North or South orientation. If the solar wind has energetic bursts, contracting and expanding the magnetosphere, or if the solar wind takes a southward polarization, geomagnetic storms can be expected. The southward field causes magnetic reconnection of the dayside magnetopause, rapidly injecting magnetic and particle energy into the Earth's magnetosphere.

During a geomagnetic storm, the ionosphere's F2 layer will become unstable, fragment, and may even disappear. In the northern and southern pole regions of the Earth, auroras will be observable in the sky.

Enlarge
picture
Magnetosphere in the near-Earth space environment.

Geomagnetic storm effects

Radiation hazards to humans

Intense solar flares release very-high-energy particles that can cause radiation poisoning to humans (and mammals in general) in the same way as low-energy radiation from nuclear blasts.

Earth's atmosphere and magnetosphere allow adequate protection at ground level, but astronauts in space are subject to potentially lethal doses of radiation. The penetration of high-energy particles into living cells can cause chromosome damage, cancer, and a host of other health problems. Large doses can be fatal immediately.

Solar protons with energies greater than 30 MeV are particularly hazardous. In October 1989, the Sun produced enough energetic particles that, if an astronaut were to have been standing on the Moon at the time, wearing only a space suit and caught out in the brunt of the storm, would probably have died; the expected dose would be about 7000 rem. Note that astronauts who had time to gain safety in a shelter beneath moon soil would have absorbed only slight amounts of radiation.

The cosmonauts on the Mir station were subjected to daily doses of about twice the yearly dose on the ground, and during the solar storm at the end of 1989 they absorbed their full-year radiation dose limit in just a few hours.

Solar proton events can also produce elevated radiation aboard aircraft flying at high altitudes. Although these risks are small, monitoring of solar proton events by satellite instrumentation allows the occasional exposure to be monitored and evaluated, and eventually the flight paths and altitudes adjusted in order to lower the absorbed dose of the flight crews.

Biology

There is a growing body of evidence that changes in the geomagnetic field affect biological systems. Studies indicate that physically stressed human biological systems may respond to fluctuations in the geomagnetic field. Interest and concern in this subject have led the International Union of Radio Science to create a new commission entitled Commission K - Electromagnetics in Biology and Medicine,current chair Dr. Frank Prato.

Possibly the most closely studied of the variable Sun's biological effects has been the degradation of homing pigeons' navigational abilities during geomagnetic storms. Pigeons and other migratory animals, such as dolphins and whales, have internal biological compasses composed of the mineral magnetite wrapped in bundles of nerve cells. This gives them the sense known as magnetoception. While this probably is not their primary method of navigation, there have been many pigeon race smashes, a term used when only a small percentage of birds return home from a release site.Because these losses have occurred during geomagnetic storms, pigeon handlers have learned to ask for geomagnetic alerts and warnings as an aid to scheduling races.

Disrupted systems

Communications

Many communication systems use the ionosphere to reflect radio signals over long distances. Ionospheric storms can affect radio communication at all latitudes. Some radio frequencies are absorbed and others are reflected, leading to rapidly fluctuating signals and unexpected propagation paths. TV and commercial radio stations are little affected by solar activity, but ground-to-air, ship-to-shore, shortwave broadcast, and amateur radio (mostly the bands below 30 MHz) are frequently disrupted. Radio operators using HF bands rely upon solar and geomagnetic alerts to keep their communication circuits up and running.

Some military detection or early warning systems are also affected by solar activity. The over-the-horizon radar bounces signals off the ionosphere to monitor the launch of aircraft and missiles from long distances. During geomagnetic storms, this system can be severely hampered by radio clutter. Some submarine detection systems use the magnetic signatures of submarines as one input to their locating schemes. Geomagnetic storms can mask and distort these signals.

The Federal Aviation Administration routinely receives alerts of solar radio bursts so that they can recognize communication problems and forego unnecessary maintenance. When an aircraft and a ground station are aligned with the Sun, jamming of air-control radio frequencies can occur. This can also happen when an Earth station, a satellite, and the Sun are in alignment.

The telegraph lines in the past were affected by geomagnetic storms as well. The telegraphs used a long wire for the data line, stretching for many miles, using ground as the return wire and being fed with DC power from a battery; this made them (together with the power lines mentioned below) susceptible to being influenced by the fluctuations caused by the ring current. The voltage/current induced by the geomagnetic storm could have led to diminishing of the signal, when subtracted from the battery polarity, or to overly strong and spurious signals when added to it; some operators in such cases even learned to disconnect the battery and rely on the induced current as their power source. In extreme cases the induced current was so high the coils at the receiving side burst in flames, or the operators received electric shocks. Geomagnetic storms affect also long-haul telephone lines, including undersea cables unless they are fiber optic.

Damage to communications satellites can disrupt non-terrestrial telephone, television, radio, and Internet links.The National Academy of Sciences reported in 2008 on possible scenarios of widespread disruption in the 2012-2013 solar peak.

Navigation systems

Systems such as GPS, LORAN, and the now-defunct OMEGA are adversely affected when solar activity disrupts their signal propagation. The OMEGA system consisted of eight transmitters located throughout the world. Airplanes and ships used the very low frequency signals from these transmitters to determine their positions. During solar events and geomagnetic storms, the system gave navigators information that is inaccurate by as much as several miles. If navigators had been alerted that a proton event or geomagnetic storm was in progress, they could have switched to a backup system.

GPS signals are affected when solar activity causes sudden variations in the density of the ionosphere, causing the GPS signals to scintillate (like a twinkling star). The scintillation of satellite signals during ionospheric disturbances is studied at HAARP during ionospheric modification experiments. It has also been studied at the Jicamarca Radio Observatory.

One technology used to allow GPS receivers to continue to operate in the presence of some confusing signals is Receiver Autonomous Integrity Monitoring (RAIM). However, RAIM is predicated on the assumption that a majority of the GPS constellation is operating properly, and so it is much less useful when the entire constellation is perturbed by global influences such as geomagnetic storms. Even if RAIM detects a loss of integrity in these cases, it may not be able to provide a useful, reliable signal.

Satellite hardware damage

Geomagnetic storms and increased solar ultraviolet emission heat Earth's upper atmosphere, causing it to expand. The heated air rises, and the density at the orbit of satellites up to about 1,000 km (621 mi) increases significantly. This results in increased drag on satellites in space, causing them to slow and change orbit slightly. Unless Low Earth Orbit satellites are routinely boosted to higher orbits, they slowly fall, and eventually burn up in Earth's atmosphere.

Skylab is an example of a spacecraft reentering Earth's atmosphere prematurely in 1979 as a result of higher-than-expected solar activity. During the great geomagnetic storm of March 1989, four of the Navy's navigational satellites had to be taken out of service for up to a week, the U.S. Space Command had to post new orbital elements for over 1000 objects affected, and the Solar Maximum Mission satellite fell out of orbit in December the same year.

The vulnerability of the satellites depends on their position as well. The South Atlantic Anomaly is a perilous place for a satellite to pass through.

As technology has allowed spacecraft components to become smaller, their miniaturized systems have become increasingly vulnerable to the more energetic solar particles. These particles can cause physical damage to microchips and can change software commands in satellite-borne computers.

Another problem for satellite operators is differential charging. During geomagnetic storms, the number and energy of electrons and ions increase. When a satellite travels through this energized environment, the charged particles striking the spacecraft cause different portions of the spacecraft to be differentially charged. Eventually, electrical discharges can arc across spacecraft components, harming and possibly disabling them.

Bulk charging (also called deep charging) occurs when energetic particles, primarily electrons, penetrate the outer covering of a satellite and deposit their charge in its internal parts. If sufficient charge accumulates in any one component, it may attempt to neutralize by discharging to other components. This discharge is potentially hazardous to the satellite's electronic systems.[citation needed]

Geologic exploration

Earth's magnetic field is used by geologists to determine subterranean rock structures. For the most part, these geodetic surveyors are searching for oil, gas, or mineral deposits. They can accomplish this only when Earth's field is quiet, so that true magnetic signatures can be detected. Other geophysicists prefer to work during geomagnetic storms, when strong variations in the Earth's normal subsurface electric currents allow them to sense subsurface oil or mineral structures. This technique is called magnetotellurics. For these reasons, many surveyors use geomagnetic alerts and predictions to schedule their mapping activities.

Electric grid

When magnetic fields move about in the vicinity of a conductor such as a wire, a geomagnetically induced current is produced in the conductor. This happens on a grand scale during geomagnetic storms (the same mechanism also influences telephone and telegraph lines, see above) on all long transmission lines. Power companies which operate long transmission lines (many kilometers in length) are thus subject to damage by this effect. Notably, this chiefly includes operators in China, North America, and Australia; the European grid consists mainly of shorter transmission cables, which are less vulnerable to damage.

The (nearly direct) currents induced in these lines from geomagnetic storms are harmful to electrical transmission equipment, especially generators and transformers — induces core saturation, constraining their performance (as well as tripping various safety devices), and causes coils and cores to heat up. This heat can disable or destroy them, even inducing a chain reaction that can overload and blow transformers throughout a system. This is precisely what happened on March 13, 1989: in Québec, as well as across parts of the northeastern U.S., the electrical supply was cut off to over 6 million people for 9 hours due to a huge geomagnetic storm. Some areas of Sweden were similarly affected.

According to a study by Metatech corporation, a storm with a strength comparative to that of 1921, 130 million people would be left without power and 350 transformers would be broken, with a cost totaling 2 trillion dollars.

By receiving geomagnetic storm alerts and warnings (e.g. by the Space Weather prediction Center; via Space Weather satellites as SOHO or ACE), power companies can (and often do) minimize damage to power transmission equipment, by momentarily disconnecting transformers or by inducing temporary blackouts. Preventative measures also exist, including digging transmission cables into the soil, placing lightning rods on transmission wires, reducing the operating voltages of transformers, and using cables that are shorter than 10 km.

Pipelines

Rapidly fluctuating geomagnetic fields can produce geomagnetically induced currents in pipelines. This can cause multiple problems for pipeline engineers. Flow meters in the pipeline can transmit erroneous flow information, and the corrosion rate of the pipeline is dramatically increased.If engineers incorrectly attempt to balance the current during a geomagnetic storm, corrosion rates may increase even more. Once again, pipeline managers thus receive space weather alerts and warnings to allow them to implement defensive measures.

Instruments

A wide range of ground-based magnetospheric observatories exist.Magnetometers monitor the auroral zone as well as the equatorial region. Two types of radar - coherent scatter and incoherent scatter - are used to probe the auroral ionosphere. By bouncing signals off ionospheric irregularities (which convect with their field lines) one can trace their motion and infer magnetospheric convection.

Spacecraft instruments include:

  • Magnetometers, usually of the flux gate type. Usually these are at the end of booms, to keep them away from magnetic interference by the spacecraft and its electric circuits.
  • Electric sensors at the ends of opposing booms are used to measure potential differences between separated points, to derive electric field associated with convection. The method works best at high plasma densities in low Earth orbit; far from Earth long booms are needed, to avoid shielding-out of electric forces.
  • Radio sounders from the ground can bounce radio waves of varying frequency off the ionosphere, and by timing their return get the profile of electron density in the ionosphere - up to its peak, past which radio waves no longer return. Radio sounders in low Earth orbit aboard the Canadian Alouette 1 (1962) and Alouette 2 (1965), beamed radio waves earthward and observed the electron density profile of the "topside ionosphere." Other radio sounding methods were also tried in the ionosphere.
  • A great variety of "particle detectors" have operated in orbit. The original observations of the Van Allen radiation belt used a Geiger counter, a crude detector unable to tell particle charge or energy. Later scintillator detectors were used, and still later "channeltron" electron multipliers have found particularly wide use. To derive charge and mass composition, as well as energies, a variety of mass spectrograph designs were used. For energies up to about 50 keV (which constitute most of the magnetospheric plasma) time-of-flight spectrometers (e.g. "top-hat" design) are widely used.[citation needed]

Computers have made it possible to bring together decades of isolated magnetic observations and extract average patterns of electrical currents and average responses to interplanetary variations. They also run simulations of the global magnetosphere and its responses, by solving the equations of magnetohydrodynamics (MHD) on a numerical grid. Appropriate extensions must be added to cover the inner magnetosphere, where magnetic drifts and ionospheric conduction also need to be taken into account. So far the results are difficult to interpret, and certain assumptions are still needed to cover small-scale phenomena.